Изменчивость организмов проявляется в разнообразии особей (одного вида, породы или сорта), отличающихся друг от друга по комплексу признаков, свойств и качеств. Причины тому могут быть разными. В одних случаях данные различия (при одинаковых генотипах у организмов) определяются условиями среды, в которых происходит развитие особей. В других — различия обусловлены неодинаковыми генотипами организмов. На основании этого выделяют два типа изменчивости: ненаследственную (модификационную, фенотипическую) и наследственную (генотипическую).

Модификационная (фенотипическая) изменчивость заключается в том, что под действием разных условий внешней среды у организмов одного вида, генотипически одинаковых, наблюдается изменение признаков (фенотипа). Изменения эти индивидуальны и не наследуются, т. е. не передаются особям следующих поколений. Рассмотрим проявление подобной закономерности на нескольких примерах.

В одном из опытов корневище одуванчика разрезали вдоль острой бритвой и высадили половинки в разных условиях — в низине и в горах. К концу сезона из этих проростков выросли совершенно не похожие друг на друга растения. Первое из них (в низине) было высоким, с большими листьями и крупным цветком. Второе, выросшее в горах, в суровых условиях, оказалось низкорослым, с мелкими листьями и цветком (рис. 1).

Генотип у этих двух растений абсолютно идентичен (ведь они выросли из половинок одного корневища), но их фенотипы существенно различались в результате разных условий произрастания. Потомки этих двух растений, выращенные в одинаковых условиях, ничем не отличались друг от друга. Следовательно, фенотипические изменения не наследуются.

12.8

Рис. 1. Изменение одуванчика под влиянием внешних условий среды (по Боннье): ? — растение, выращенное в низине; ? — в горах; оба растения — отводки одной особи

Биологическое значение модификационной изменчивости заключается в обеспечении индивидуальной приспособляемости организма к различным условиям внешней среды.

Рассмотрим другой пример. Представим себе, что два брата, однояйцовых близнеца (т. е. с идентичными генотипами) выбрали еще в детстве разные увлечения: один посвятил себя тяжелой атлетике, а другой — игре на скрипке. Очевидно, через десяток лет между ними будет наблюдаться существенное физическое различие. И также ясно, что у спортсмена его новорожденный сын не родится с «атлетическими» признаками.

Изменения фенотипа под воздействием условий внешней среды могут происходить не беспредельно, а только в ограниченном диапазоне (широком или узком), который обусловлен генотипом. Диапазон, в пределах которого признак может изменяться, носит название нормы реакции. Так, например, признаки у коров, учитываемые в животноводстве, — удойность (т. е. количество вырабатываемого молока) и жирность молока — могут изменяться, но в разных пределах. В зависимости от условий содержания и кормления животных удойность варьируется существенно (от стаканов до нескольких ведер в сутки). В данном случае говорят о широкой норме реакции. А вот жирность молока очень незначительно колеблется в зависимости от условий содержания (всего на сотые доли процента), т. е. этот признак характеризуется узкой нормой реакции.

Итак, условия внешней среды обусловливают изменения признака в пределах нормы реакции. Границы же последней продиктованы генотипом. Следовательно, изменения самой нормы реакции могут произойти только в результате изменения генотипа (т. е. в результате генотипической изменчивости).

Наследственная (генотипическая) изменчивость

В данном случае происходит изменение генотипа и как результат меняются признаки (или их комбинации). Новые признаки наследуются, т. е. передаются последующим поколениям организмов.

Выделяют две формы наследственной изменчивости - комбинативную и мутационную. При комбинативной сами гены не меняются, другим становится лишь их сочетание. При этой форме изменчивости имеющиеся признаки комбинируются (в ряду поколений особей) по-разному, что создает большое разнообразие организмов. Комбинативная изменчивость осуществляется в процессе полового размножения.

Существует три ее источника:

>   при независимом расхождении хромосом в ходе мейоза образуются гаметы с разными сочетаниями генов, т. е. разнокачественные гаметы;

>   сочетания при оплодотворении гамет разных типов (по комплексу генов) равновероятны, что обеспечивает формирование разнокачественных зигот, из которых разовьются различающиеся между собой особи;

>   за счет процесса кроссинговера повышается разнообразие гамет в результате перекомбинации генов в ходе мейоза между гомологичными хромосомами.

Посмотрим, что представляет собой кроссинговер (рис. 2).

12.9

Рис. 2. Упрощенная схема кроссинговера. Две гомологичные хромосомы разрываются в точке контакта (II), и участки их воссоединяются в ином сочетании, вследствие чего образуются две хромосомы (III), каждая из которых содержит участки обоих исходных хромосом (I)

В профазе мейоза  гомологичные хромосомы каждой пары сближаются, располагаются параллельно друг другу и между ними образуются прочные связи, хромосомы перекручиваются. На этом этапе может происходить (в некоторой части делящихся мейозом клеток) разрыв обеих хромосом на одном уровне, взаимный обмен идентичными участками гомологичных хромосом и восстановление целостности каждой хромосомы. В ходе кроссинговера происходит, таким образом, обмен генами между двумя гомологичными хромосомами. Это обеспечивает новые сочетания генов при образовании гамет, а следовательно, и появление особей с иными сочетаниями признаков, т. е. увеличивается разнообразие особей данного вида.

Мутационная изменчивость. Термин «мутация» впервые был введен в генетику Гуго де Фризом (1901 г.), голландским ботаником. Мутацией он назвал явление скачкообразного, внезапного изменения наследственного признака.

Выделяют три формы мутационной изменчивости:

1) генные мутации, когда происходят изменения в самих генах — в составе и последовательности нуклеотидов;

2) хромосомные мутации: изменения осуществляются на уровне хромосомы — утрата (отрыв и потеря) ее участка, присоединение к хромосоме участка, оторвавшегося от другого, и т. д.;

3) геномные мутации — изменения в числе хромосом у данного организма: либо в кратное число раз гаплоидному набору хромосом — 3n, 4n, 5n и т. д. — это полиплоидия, либо на одну или несколько хромосом в наборе — (2n + 1), (2n – 1), (2n + 2), (2n – 2) и т. д. — гетероплоидия (рис. 3 и 4).

12.10

Рис. 3. Механизм возникновения: а — полиплоидии; б — гетероплоидии

12.11

Рис. 4. Цветки: а — диплоидного; б — тетраплоидного растения лилии — типичный пример увеличения размеров, наблюдаемого при удвоении числа хромосом

Источник: Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"